Copied to
clipboard

G = C42.144D10order 320 = 26·5

144th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.144D10, C10.922- 1+4, C10.1282+ 1+4, C202Q831C2, (D4×Dic5)⋊32C2, (Q8×Dic5)⋊21C2, C4.4D415D5, D103Q833C2, (C2×D4).177D10, C202D4.14C2, C42⋊D521C2, (C2×C20).82C23, (C2×Q8).140D10, C22⋊C4.37D10, C20.127(C4○D4), C4.39(D42D5), (C4×C20).189C22, (C2×C10).226C24, C2.52(D48D10), C23.48(C22×D5), Dic5.5D442C2, (D4×C10).159C22, C22.D2027C2, C23.D1042C2, C4⋊Dic5.236C22, (C22×C10).56C23, (Q8×C10).130C22, (C22×D5).98C23, C22.247(C23×D5), Dic5.14D442C2, C23.D5.59C22, C59(C22.36C24), (C2×Dic5).116C23, (C4×Dic5).144C22, (C2×Dic10).40C22, C10.D4.49C22, C2.53(D4.10D10), D10⋊C4.111C22, (C22×Dic5).146C22, C10.94(C2×C4○D4), (C5×C4.4D4)⋊18C2, C2.58(C2×D42D5), (C2×C4×D5).131C22, (C2×C4).199(C22×D5), (C2×C5⋊D4).64C22, (C5×C22⋊C4).68C22, SmallGroup(320,1354)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.144D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.144D10
C5C2×C10 — C42.144D10
C1C22C4.4D4

Generators and relations for C42.144D10
 G = < a,b,c,d | a4=b4=c10=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=a2b-1, dbd-1=b-1, dcd-1=b2c-1 >

Subgroups: 734 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4⋊Q8, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C22.36C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, C4⋊Dic5, D10⋊C4, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C2×Dic10, C2×C4×D5, C22×Dic5, C2×C5⋊D4, D4×C10, Q8×C10, C202Q8, C42⋊D5, Dic5.14D4, C23.D10, Dic5.5D4, C22.D20, D4×Dic5, C202D4, Q8×Dic5, D103Q8, C5×C4.4D4, C42.144D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2+ 1+4, 2- 1+4, C22×D5, C22.36C24, D42D5, C23×D5, C2×D42D5, D48D10, D4.10D10, C42.144D10

Smallest permutation representation of C42.144D10
On 160 points
Generators in S160
(1 108 33 113)(2 114 34 109)(3 110 35 115)(4 116 36 101)(5 102 37 117)(6 118 38 103)(7 104 39 119)(8 120 40 105)(9 106 31 111)(10 112 32 107)(11 98 53 138)(12 139 54 99)(13 100 55 140)(14 131 56 91)(15 92 57 132)(16 133 58 93)(17 94 59 134)(18 135 60 95)(19 96 51 136)(20 137 52 97)(21 90 141 63)(22 64 142 81)(23 82 143 65)(24 66 144 83)(25 84 145 67)(26 68 146 85)(27 86 147 69)(28 70 148 87)(29 88 149 61)(30 62 150 89)(41 154 74 130)(42 121 75 155)(43 156 76 122)(44 123 77 157)(45 158 78 124)(46 125 79 159)(47 160 80 126)(48 127 71 151)(49 152 72 128)(50 129 73 153)
(1 73 13 85)(2 69 14 41)(3 75 15 87)(4 61 16 43)(5 77 17 89)(6 63 18 45)(7 79 19 81)(8 65 20 47)(9 71 11 83)(10 67 12 49)(21 135 158 118)(22 104 159 96)(23 137 160 120)(24 106 151 98)(25 139 152 112)(26 108 153 100)(27 131 154 114)(28 110 155 92)(29 133 156 116)(30 102 157 94)(31 48 53 66)(32 84 54 72)(33 50 55 68)(34 86 56 74)(35 42 57 70)(36 88 58 76)(37 44 59 62)(38 90 60 78)(39 46 51 64)(40 82 52 80)(91 130 109 147)(93 122 101 149)(95 124 103 141)(97 126 105 143)(99 128 107 145)(111 127 138 144)(113 129 140 146)(115 121 132 148)(117 123 134 150)(119 125 136 142)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 13 12)(2 11 14 9)(3 8 15 20)(4 19 16 7)(5 6 17 18)(21 123 158 150)(22 149 159 122)(23 121 160 148)(24 147 151 130)(25 129 152 146)(26 145 153 128)(27 127 154 144)(28 143 155 126)(29 125 156 142)(30 141 157 124)(31 34 53 56)(32 55 54 33)(35 40 57 52)(36 51 58 39)(37 38 59 60)(41 83 69 71)(42 80 70 82)(43 81 61 79)(44 78 62 90)(45 89 63 77)(46 76 64 88)(47 87 65 75)(48 74 66 86)(49 85 67 73)(50 72 68 84)(91 106 109 98)(92 97 110 105)(93 104 101 96)(94 95 102 103)(99 108 107 100)(111 114 138 131)(112 140 139 113)(115 120 132 137)(116 136 133 119)(117 118 134 135)

G:=sub<Sym(160)| (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,98,53,138)(12,139,54,99)(13,100,55,140)(14,131,56,91)(15,92,57,132)(16,133,58,93)(17,94,59,134)(18,135,60,95)(19,96,51,136)(20,137,52,97)(21,90,141,63)(22,64,142,81)(23,82,143,65)(24,66,144,83)(25,84,145,67)(26,68,146,85)(27,86,147,69)(28,70,148,87)(29,88,149,61)(30,62,150,89)(41,154,74,130)(42,121,75,155)(43,156,76,122)(44,123,77,157)(45,158,78,124)(46,125,79,159)(47,160,80,126)(48,127,71,151)(49,152,72,128)(50,129,73,153), (1,73,13,85)(2,69,14,41)(3,75,15,87)(4,61,16,43)(5,77,17,89)(6,63,18,45)(7,79,19,81)(8,65,20,47)(9,71,11,83)(10,67,12,49)(21,135,158,118)(22,104,159,96)(23,137,160,120)(24,106,151,98)(25,139,152,112)(26,108,153,100)(27,131,154,114)(28,110,155,92)(29,133,156,116)(30,102,157,94)(31,48,53,66)(32,84,54,72)(33,50,55,68)(34,86,56,74)(35,42,57,70)(36,88,58,76)(37,44,59,62)(38,90,60,78)(39,46,51,64)(40,82,52,80)(91,130,109,147)(93,122,101,149)(95,124,103,141)(97,126,105,143)(99,128,107,145)(111,127,138,144)(113,129,140,146)(115,121,132,148)(117,123,134,150)(119,125,136,142), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,13,12)(2,11,14,9)(3,8,15,20)(4,19,16,7)(5,6,17,18)(21,123,158,150)(22,149,159,122)(23,121,160,148)(24,147,151,130)(25,129,152,146)(26,145,153,128)(27,127,154,144)(28,143,155,126)(29,125,156,142)(30,141,157,124)(31,34,53,56)(32,55,54,33)(35,40,57,52)(36,51,58,39)(37,38,59,60)(41,83,69,71)(42,80,70,82)(43,81,61,79)(44,78,62,90)(45,89,63,77)(46,76,64,88)(47,87,65,75)(48,74,66,86)(49,85,67,73)(50,72,68,84)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,138,131)(112,140,139,113)(115,120,132,137)(116,136,133,119)(117,118,134,135)>;

G:=Group( (1,108,33,113)(2,114,34,109)(3,110,35,115)(4,116,36,101)(5,102,37,117)(6,118,38,103)(7,104,39,119)(8,120,40,105)(9,106,31,111)(10,112,32,107)(11,98,53,138)(12,139,54,99)(13,100,55,140)(14,131,56,91)(15,92,57,132)(16,133,58,93)(17,94,59,134)(18,135,60,95)(19,96,51,136)(20,137,52,97)(21,90,141,63)(22,64,142,81)(23,82,143,65)(24,66,144,83)(25,84,145,67)(26,68,146,85)(27,86,147,69)(28,70,148,87)(29,88,149,61)(30,62,150,89)(41,154,74,130)(42,121,75,155)(43,156,76,122)(44,123,77,157)(45,158,78,124)(46,125,79,159)(47,160,80,126)(48,127,71,151)(49,152,72,128)(50,129,73,153), (1,73,13,85)(2,69,14,41)(3,75,15,87)(4,61,16,43)(5,77,17,89)(6,63,18,45)(7,79,19,81)(8,65,20,47)(9,71,11,83)(10,67,12,49)(21,135,158,118)(22,104,159,96)(23,137,160,120)(24,106,151,98)(25,139,152,112)(26,108,153,100)(27,131,154,114)(28,110,155,92)(29,133,156,116)(30,102,157,94)(31,48,53,66)(32,84,54,72)(33,50,55,68)(34,86,56,74)(35,42,57,70)(36,88,58,76)(37,44,59,62)(38,90,60,78)(39,46,51,64)(40,82,52,80)(91,130,109,147)(93,122,101,149)(95,124,103,141)(97,126,105,143)(99,128,107,145)(111,127,138,144)(113,129,140,146)(115,121,132,148)(117,123,134,150)(119,125,136,142), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,13,12)(2,11,14,9)(3,8,15,20)(4,19,16,7)(5,6,17,18)(21,123,158,150)(22,149,159,122)(23,121,160,148)(24,147,151,130)(25,129,152,146)(26,145,153,128)(27,127,154,144)(28,143,155,126)(29,125,156,142)(30,141,157,124)(31,34,53,56)(32,55,54,33)(35,40,57,52)(36,51,58,39)(37,38,59,60)(41,83,69,71)(42,80,70,82)(43,81,61,79)(44,78,62,90)(45,89,63,77)(46,76,64,88)(47,87,65,75)(48,74,66,86)(49,85,67,73)(50,72,68,84)(91,106,109,98)(92,97,110,105)(93,104,101,96)(94,95,102,103)(99,108,107,100)(111,114,138,131)(112,140,139,113)(115,120,132,137)(116,136,133,119)(117,118,134,135) );

G=PermutationGroup([[(1,108,33,113),(2,114,34,109),(3,110,35,115),(4,116,36,101),(5,102,37,117),(6,118,38,103),(7,104,39,119),(8,120,40,105),(9,106,31,111),(10,112,32,107),(11,98,53,138),(12,139,54,99),(13,100,55,140),(14,131,56,91),(15,92,57,132),(16,133,58,93),(17,94,59,134),(18,135,60,95),(19,96,51,136),(20,137,52,97),(21,90,141,63),(22,64,142,81),(23,82,143,65),(24,66,144,83),(25,84,145,67),(26,68,146,85),(27,86,147,69),(28,70,148,87),(29,88,149,61),(30,62,150,89),(41,154,74,130),(42,121,75,155),(43,156,76,122),(44,123,77,157),(45,158,78,124),(46,125,79,159),(47,160,80,126),(48,127,71,151),(49,152,72,128),(50,129,73,153)], [(1,73,13,85),(2,69,14,41),(3,75,15,87),(4,61,16,43),(5,77,17,89),(6,63,18,45),(7,79,19,81),(8,65,20,47),(9,71,11,83),(10,67,12,49),(21,135,158,118),(22,104,159,96),(23,137,160,120),(24,106,151,98),(25,139,152,112),(26,108,153,100),(27,131,154,114),(28,110,155,92),(29,133,156,116),(30,102,157,94),(31,48,53,66),(32,84,54,72),(33,50,55,68),(34,86,56,74),(35,42,57,70),(36,88,58,76),(37,44,59,62),(38,90,60,78),(39,46,51,64),(40,82,52,80),(91,130,109,147),(93,122,101,149),(95,124,103,141),(97,126,105,143),(99,128,107,145),(111,127,138,144),(113,129,140,146),(115,121,132,148),(117,123,134,150),(119,125,136,142)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,13,12),(2,11,14,9),(3,8,15,20),(4,19,16,7),(5,6,17,18),(21,123,158,150),(22,149,159,122),(23,121,160,148),(24,147,151,130),(25,129,152,146),(26,145,153,128),(27,127,154,144),(28,143,155,126),(29,125,156,142),(30,141,157,124),(31,34,53,56),(32,55,54,33),(35,40,57,52),(36,51,58,39),(37,38,59,60),(41,83,69,71),(42,80,70,82),(43,81,61,79),(44,78,62,90),(45,89,63,77),(46,76,64,88),(47,87,65,75),(48,74,66,86),(49,85,67,73),(50,72,68,84),(91,106,109,98),(92,97,110,105),(93,104,101,96),(94,95,102,103),(99,108,107,100),(111,114,138,131),(112,140,139,113),(115,120,132,137),(116,136,133,119),(117,118,134,135)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K···4O5A5B10A···10F10G10H10I10J20A···20L20M20N20O20P
order122222244444444444···45510···101010101020···2020202020
size111144202244441010101020···20222···288884···48888

50 irreducible representations

dim11111111111122222244444
type++++++++++++++++++--+-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D102+ 1+42- 1+4D42D5D48D10D4.10D10
kernelC42.144D10C202Q8C42⋊D5Dic5.14D4C23.D10Dic5.5D4C22.D20D4×Dic5C202D4Q8×Dic5D103Q8C5×C4.4D4C4.4D4C20C42C22⋊C4C2×D4C2×Q8C10C10C4C2C2
# reps11122221111124282211444

Matrix representation of C42.144D10 in GL6(𝔽41)

4000000
0400000
00260290
00026029
00120150
00012015
,
3200000
090000
0030122426
001911717
0017151129
0034242230
,
010000
100000
000007
0000356
000700
0035600
,
0400000
100000
0000357
0000366
0035700
0036600

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,26,0,12,0,0,0,0,26,0,12,0,0,29,0,15,0,0,0,0,29,0,15],[32,0,0,0,0,0,0,9,0,0,0,0,0,0,30,19,17,34,0,0,12,11,15,24,0,0,24,7,11,22,0,0,26,17,29,30],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,7,6,0,0,0,35,0,0,0,0,7,6,0,0],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,35,36,0,0,0,0,7,6,0,0,35,36,0,0,0,0,7,6,0,0] >;

C42.144D10 in GAP, Magma, Sage, TeX

C_4^2._{144}D_{10}
% in TeX

G:=Group("C4^2.144D10");
// GroupNames label

G:=SmallGroup(320,1354);
// by ID

G=gap.SmallGroup(320,1354);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,675,570,409,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b^-1,d*b*d^-1=b^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations

׿
×
𝔽